Algebraic Curves : Solutions sheet 1

February 26, 2025

Exercise 1. Let R be a ring and I C R a proper ideal of R. A ring is called reduced if it does not contain any

(non-zero) nilpotent element.
1. Show there is a bijection between the ideals of R/I and the ideals of R containing I.
2. Show that I is maximal if, and only if, R/I is a field.
3. Show that I is prime if, and only if, R/I is a domain.
4. Show that I is radical if, and only if, R/I is reduced.
Main idea. 1. Recall a similar statement for groups and the way to prove it.
2. If m is a maximal ideal, then if m & J with J a bigger ideal, then J = R and in particular 1 € J.

3. See the parallel in the definitions: in a prime ideal p, for all a,b € R such that ab € p,a € por b e p. In a
domain, for all a,b € R such that ab=0,a =0 or b =0.

4. Recall the definitions of radical ideals and reduced rings and try to parallel them.

Solution 1.

In general for this exercise, you can use the quotient map
m:R— R/I
which is a surjective ring morphism. It is helpful to transfer from one context to another.

1. The method consists of defining two maps of sets which are inverse to each other. The maps are given by the

following:

{I CI' CRideal } «— {J C R/I ideal }
I'— m(I")
7N J) e J
We need to check:

o Well-defined:



— if I’ C R is an ideal containing I, then 7(I”) is an ideal in R/I.
— if J is an ideal in R/I, then 7~1(J) is an ideal of R containing I.

e Inverse: check that for I C I’ C R, 7= (w(I’)) = I’. The inclusion 7~ *(7(I’)) C I’ requires crucially the
hypothesis that I C I'.

2. Consider z + m € (R/m) \ {0}. Then x ¢ m, so that m 4+ (z) = R, so there exists a € R, m € m such that
1 = m + ax. The multiplicative inverse of x + m is then given by a + m. This way, we obtain an inverse for
each non-zero element of R/m, which makes it a field. The proof of the converse is similar. We can also use

the previous statement, then it is very direct but less intuitive.

3. If I is prime, let a4+ I,b+ I € R/I be such that (a4 I)(b+ I) = 0. This implies that ab € I. As I is prime,

either a or b is in I, and so either a + I or b+ I is zero in R/I. The proof of the converse is similar.
4. A similar reasoning works.

Exercise 2. Let R be a ring, S a multiplicative subset of R and M an R-module. Define the localization of M as
the set S™'M = {2, m e M, s € S}/ ~, where: 2 ~ %@EIZ?ES, t-(s-m—-s-m')=0

1. Check that the relation ~ defined above is indeed an equivalence relation and that S~'M is an S~! R-module.

2. Show that localization preserves short exact sequences i.e. if
0—=L—->M-—=N-=0
is an exact sequence of R-modules, then
0—=S"'L—-S"'M—-S'N-=0

is an exact sequence of S~!R-modules.

3. Let I C R be an ideal of R. Show that S~'I is an ideal of S™!R and that we have an isomorphism of rings
STIR/STI ~ (S/T) " (R/I),

where S/I denotes the image of S in R/I.

Solution 2.

1. e To check that this defines an equivalence relation, you need reflexivity, symmetry and transitivity. Re-
flexivity and symmetry are straightforward. Transitivity can be checked as follows: let ’:‘—11 ~ T—; and
M2 7:—; There are t1,t5 € R such that

S2

ti(samy — syma) =

0
t2(53m2 — 52m3) =0.



To cancel the mo we multiply the first equation by t2s3 and the second by t1s; and add them together,

giving
0= t1t283(82m1 - Slmg) + t1t251(33m2 — 52m3) = t1t25253m1 — t1t28281m3 = t1t252(33m1 — 51m3).

Hence we obtain ?—11 ~ "ST—;

Direct approach: S~'M is an S~'R—module. We first have to endow S~!'M with the structure of an

abelian group: for ”;—11, ’Z—; € S~ M we define

mp n mg  Samy + S1Ma
S1 52 5152 .

First, we have to check that this doesn’t depend on the choice of representative: assume 75”—11 ~ % and
1

2~ T2 i.e. there exist t1,ty € R such t;(sim; — sym)) = 0 and to(shma — samb) = 0. We have to
2 Sy

’ ! ’ ’
check that Szmsl;‘zlmz ~ S2m;/+;1m2. To this end, notice that
1°2

tita(s)sh)(samy + s1ma) = tashss (t1symy) +t18) 51 (tashyma) = tita(s152)(shm) + symsb).
——— ———
:tlslm'l :t252m/2
Hence we conclude 527"511':‘2”"2 ~ s;mél—:‘f;mé, so + is well-defined on S~!M. Using that M is an abelian
1°2
group, it is then straightforward to check that (S~™!1M,+) is an abelian group with neutral element %
(and the additive inverse of 2 € S™'M is =).

In the next step, we endow S~!M with the structure of an S~' R-module. For € S~1R and = e S—1M

we define

m rm

r
o s os’

’
T T

Again we need to check that this is well-defined; to do so, take = ~ 5 and = ~ i.e. there exist

m_
PR

7,t € S such that 7(¢’r — or’) = 0 and t(s'm — sm’) = 0. Therefore, we obtain
Tt(o's'rm) = (to'r)(ts'm) = (ror’)(tsm') = Tt(osr'm'),

and thus 7= ~ % Hence, scalar multiplication on S~'M is well-defined. Using that M is an R—

module, it is then straightforward to check that S~ M is an S~' R-module with this scalar multiplication,

i.e. distributivity, associativity and multiplication by 1 is the identity.

More conceptual approach: While the above proof is more or less straightforward, it is a bit tedious,
as we even have to check that S™!M is an abelian group. Here is a construction which is a bit more
complicated, but where a lot of these things come for free: consider the R-module M®% i.e. the direct
sum of M with itself for every element of S. For s € S and m € M, denote by t,(m) € M®S the element

which is m in the component corresponding to s and 0 otherwise. Now consider the R—submodule K of



M®S defined by
K = (ts(m) — s (m') | I € S: t(s'm —sm') =0).

Then in fact the R-module M®% /K is isomorphic to S~'M constructed above, viewed as an R-module.
Indeed, one can check that for every s € S, the map M — S~ !M sending m to = is a map of R—
modules. By the universal property of the direct sum, we obtain a map M®% — S~'M sending ¢4(m)
to =, and by definition of S ~!M we have that K is in the kernel. Hence we obtain an induced map
0: M®9/K — S7'M sending ts(m) + K to 7. This is a surjective morphism of R-modules, so to
conclude it remains to show injectivity. This is the only tricky part. In fact, notice that every element
> ses ts(ms) + K of M®9/K can be written as t5,(mo) + K for some sy € S and mg € M. Indeed,

notice that we have

ts(m) + g (M) — 159 (8'm 4+ sm') = 15(m) — 155 (8'M) + 1 (M) — 155 (sm') € K.

eEK eEK

Hence we have t5(m) + ty(m') + K = 155(s'm + sm’) + K, so we can inductively reduce the number
of summands required. So suppose we have ¢(z) = 0 for some 2 € M®9/K, and by the above write
r = t5(m)+ K for some m € M and s € S. Then 0 = ¢(x) = 2, so there exists ¢t € S with tm = 0. But
then ts(m) = ts(m) —¢1(0) is in K, so = 0. Hence ¢ is an isomorphism.

Therefore, we could have also defined S~'M as M®9 /K, and then we immediately obtain that it is an
R-module. To obtain the S~ R-module structure, you can then observe that the corresponding ring map
R — Endap(S™1M) sends elements of S to units, and thus induces a ring map S™'R — Endap (S~ M)

by the universal property of localiztion.

Remark. As for the localization of a ring, the localization of a module has a universal property: denote by
i: M — S~'M the map m — T (this is a morphism of R-modules). Then for every R-module N such that
for all s € S the map n € N +— sn € N is an isomorphism and every morphism f: M — N of R—modules there
exists a unique morphism ¢g: S™'M — N such that f = g o i. Furthermore, every such N naturally admits
the structure of an S~'R-module (if y15: N — N denotes multiplication by s, we define £ -n = pu;*(rn)) and

g is a morphism of S~!R-modules. This is what you should use to define a morphism out of S~ M.

. Denote f: L — M and g: M — N. There is a preliminary step for this proof, which is to understand that
localization is functorial, i.e. a morphism of R—modules f : L — M induces a morphism of S~!R-modules
S71f:S 'L — S~'M, defined by

LN LC))

S S
Check that it is well-defined. You should also check that for f: L — M and g: M — N we have S~1(go f) =

S7lgo S7f and S~lidy = idg-1p; (this is also part of being functorial). Instead of constructing and

checking this by hand, you can also invoke the universal property: the composition L — M — S™1M is a
morphism of L to a module where multiplication by any element of S is an isomorphism, and thus it induces
S71L — S7'M a morphism of S™!R-modules. The uniqueness in the universal property gives you the part

about composition and identity.

Now we check the exactness:



e Note that any localization of the zero module is the zero module, and any localization of the zero
morphism is the zero morphism. Hence applying S~! to the sequence and using functoriality, we still

obtain a sequence
0—=S'L—-8'M—-SIN=0

(i.e. the composition of two consecutive arrows is 0).

o For exactness at S~'L, suppose that S~'f (é) = 0 for some g € S71L. Then fil) =0in S™'M, so
there exists t € S such that ¢f(I) = 0. By injectivity of f we obtain ¢t/ = 0, and thus é = 0. Hence S~1f
is injective.

e For exactness at S™!M, consider = € ker S~1g. That is, there exists t € S such that tg(m) = 0. By

exactness of the original sequence, there exists [ € L such that f(I) = tm. One can then check that

S () =2
e For exactness at S™'NV, let S S~LN be arbitrary. Then there exists m € N such that g(m) = n, so
sy (2) =2

3. Direct approach: By exactness, the injection I — R induces an injection S~'I — S~!R (sending é €SI
to é € S7IR), so it is indeed an ideal. We now directly construct the isomorphism: consider the composition

R — R/I — (S/I)"'(R/I). An element s € S is mapped to $+f, which is a unit (with inverse 11). By

the universal property of localization, we obtain a morphism of rings S™'R — (S/I)"!(R/I), sending £ to

:'ﬂ An arbitrary element é € ST is mapped to ;j;][

p: STUR/STU — (S/1)""(R/I), sending ~ + S~ to T+,

= 0, so we obtain an induced morphism of rings

On the other hand consider the composition R — S™'R — S™'R/S~'I. An arbitrary element i € I is
mapped to %—4—5’1[ =0, so we obtain an induced map R/I — S~'*R/S™1I sending r+ I to %—1—5*1]. Then,
an arbitrary element s+ I of S/I is mapped to 2 + S~'I, which is a unit (with inverse % + S~1I). Hence

by the universal property of localization, we obtain a morphism of rings ¢: (S/I)~Y(R/I) — S™'R/S'I

r+1
s+1I

sending to £+ S~1I. Hence ¢ and v are mutually inverse ring morphisms.

Conceptual approach: We can use the previous question with the short exact sequence
0—-I—-R—R/I—0.

Hence,
0—-S1'T—-S'R—SYR/I)—0

is an exact sequence of S~'R-modules. We get directly that S~'I is a S~!R—submodule of S~ R, which is
precisely the definition of an ideal. It also described our quotient as S~!(R/I), which a priori is only a module.
So the last step is to understand what happens when localizing an R-algebra, i.e. a ring A with a ring map

o: R — A, which we view as an R-module through 7 - a := o(r)a. One can check that the S~ R-module

S~1A carries a natural multiplication, defined by e o = ag (again, check that this is well-defined). Then,

s’ ss’

one checks that this makes S~ A into a ring.

But there is also another way one can construct a ring out of S and A: the image o(S) of S in A4 is a

multiplicative subset, and so we can form the localization o(S) "1 A. It remains to check that this is isomorphic



to the ring S~'A constructed above: one checks that the map A — S~'A is a morphism of rings and sends

a(s)
1

o(S)7tA — S~ A sending ﬁ to £. It is clearly surjective, and from the definition of the equivalence relation

an element o(s) € o(S) to which is a unit with inverse 1. Hence we obtain an induced ring morphism

one can check that it is also injective.
Applying the above to A = R/I and the quotient map o: R — R/I, we obtain that S~*(R/I) has a natural
ring structure and is isomorphic as a ring to o(S)"Y(R/I) = (S/I)"Y(R/I).

Exercise 3. Show that, for any exact sequence of finite-dimensional vector spaces:

0O—-Vi—=>Vo—...—>V,—0

the following relation holds:

S (-1)*-dim(V;) = 0

i=1

Solution 3. We give a names to the maps in the sequence as follows

d d: dn— dy dn
0V BV . 25y, 250250

By the rank theorem and definition of exact sequences, we obtain
dimV; = dimkerd; + dim imd; = dimkerd; 4+ dimkerd;
~——
=kerd;41

for all ¢. Therefore, it follows that

n n

Z(—l)i -dim(V;) = Z(—l)i(dimker d; + dimkerd; 1)

=1 i=1

n n+1
=Y (~1)'dimkerd; — » (~1)" dimkerd;
i=1 i=2
= —dimkerd; — (—1)""' dimker d,,;
=0.

Exercise 4. 1. Let k be an infinite field, F € k[X}, ..., X,,]. Suppose F(ay,...,a,) = 0 for all aq,...,a, € k.
Show that F' = 0.

2. Give an example showing that a similar result doesn’t hold for a finite field.
Main idea.

1. Use induction.

2. Use Fermat’s little theorem.

Solution 4.



1. e Base case : if F' € k[X] is of degree n > 1, it has at most n roots so if k is infinite, there are a € k,

f(a) #£ 0. If fis constant, it is clear that the hypothesis implies f = 0.

e Induction step : assume the statement holds for k[Xi,...,X,]. Let F € k[Xy,..., X, Xnt1]
E[X1,..., Xn][Xnt1] satisfying F(ay,...,ant1) = 0 for all a1, ...,an41 € k. We call f; € k[Xq,...
the coefficient of X;+1 in F, for 0 <7 < degy, , F. Forall (a1,...,a,) € K™, F(ay,...,an, Xnt1), is

a polynomial in one variable which vanishes at all a,11 € k, so it is 0. Thus for all (aq,...,a,) € k",

fila1,...,a,) =0. By induction hypothesis, f; = 0so F = 0.
2. XP — X in F,[X] is zero at all elements of F,. But it is not zero in the polynomial ring.

Exercise 5. Let F € k[X1,...,X,] be homogeneous of degree d. Show that:

- OF
;Xi.a—Xizd-F

Solution 5.

By linearity, it suffices to prove it for monomials F' = Xfl .-+ Xin_ Then, given j € {1,...,n}, we see
oF . i1 1;—1 i
ai)(j:Zle ...XjJ ...Xnn
and thus OF
Hence we have
> x g = (L) r
j=1 J i=1

If F has degree d then Z?:l i; = d and we are done.



